
IBM Software

Thought Leadership White Paper

August 2013

Smarter quality management
The fast track to competitive advantage

2 Smarter quality management

Organizations that create and deliver software—whether for
their own IT operations, for the packaged applications market,
or as the core of their final product, as in the systems space—
must grapple not only with today’s tough economic climate,
but also with increased complexity in their processes and supply
chains. Many factors serve to complicate software delivery, but
competition lies at the heart of this complexity.

Here are a few examples. In the products arena, customers
demand more from the software components designed for the
latest hardware, often with requirements that change rapidly,
even as software projects are underway. Keeping track of changes
while meeting aggressive (and unaltered!) deadlines is difficult, if
not impossible. In the IT space, more businesses are focused on
their operational software for capturing and providing value to
their customers and lines of businesses. E-commerce websites
compete to improve customer relations and simplify online busi-
ness; businesses that create highly optimized supply chains sup-
porting a fast, efficient ecosystem of partners quickly rise in the
marketplace.

What does this competitive environment mean for businesses
seeking to deliver high-quality products and services? Certainly,
effective quality management and continuous testing create
opportunities to deliver key business benefits, such as improved
market share, higher customer satisfaction, and increased brand
equity. But top quality in the completed product cannot serve as
the single guiding principle by which products are produced and
delivered. Time to market is also key; costs and risk factors must
also be part of the balancing act. Get these things wrong, and
you may face unsustainable costs, missed windows of opportu-
nity, unhappy customers, even a massive recall or the complete
failure of a system at a critical moment. Get these things right,
and you can achieve a positive operational return on investment
from efficiencies gained in development activities.

One of the biggest challenges related to quality management
is how to invest intelligently to minimize risk, given economic
constraints. However, figuring out a) how to relate quality to
business outcome and b) what constitutes the right level of
quality for individual products is not always clear.

This paper introduces a practical approach to quality manage-
ment (QM), continuous testing, and service virtualization that
helps reduce time to market without sacrificing quality in the
outcome. The underlying concepts presented here will be
familiar to software project managers, especially those with
QM experience, but we will explain some fundamentals as we go
along to ensure all readers seeking these benefits can understand
the essential processes involved.

The nature of software development
Here’s one way to understand the “soft” in software: it is
relatively easy to change. But for software designed for the
commercial space, where the competitive pressures described
above govern a software project’s success or failure, the “soft”
feature happens to be one of its riskiest attributes. That’s because
software projects are seldom designed and manufactured as in
traditional engineering projects—a bridge, for example. While a
bridge is engineered through traditional planning and architec-
ture based on the laws of physics, then produced according to an
organized plan with a division of labor, software is, at its essence,
simply information. Its development typically resembles a more
creative process than one bound by the laws of nature. Walker
Royce, IBM Software Group/Rational’s chief software econo-
mist, compares software production to movie production: a
collaboration involving a team of craftsmen and emerging from
the naturally creative process of artistic yet technical people.

3IBM Software

Over the past two decades, this unique feature of software
has been understood and embraced by iterative development
practitioners, who now tend to develop software in stages called
“iterations”—with many of these practitioners following agile
development practices outlined in the Agile Manifesto. Each
iteration delivers a working, functional version of the software
under development, so it can be reviewed, tested, and vetted by
stakeholders and other teams seeking adherence to the original
project requirements. This allows project managers to make
smaller, incremental course corrections during the project
lifecycle—thus ensuring the final deliverable is close to
expectations—as opposed to having separate teams work
according to a plan, assemble various components near
project end, and discover major failures due to integration
or deployment complexities.

For testing teams, the iterative development process integrates
quality management and continuous testing across all stages of
the project work f low, as opposed to relegating test activity to
the end of the project. We will describe the role of iterative
development-based quality management and continuous testing
more fully in future sections.

Quality management in the software
development lifecycle
What is the role of the testing, or QM, team during the iterative
lifecycle? What do they test for, and how do they know what is
changing from one iteration to the next?

As noted above, traditional software testing usually occurs late in
the lifecycle, after multiple coding teams have spent much time
and effort to deliver their components toward the complete
project. Because these traditionally managed projects proceed
according to strictly described requirement sets, and various

component teams focus on their portions alone, it is up to
the testers to discover the discontinuities and malfunctions
as these components are assembled—then it’s the testers who
must deliver the bad news that much rework has to be done in
order to get the project back on track.

Iterative software development techniques improve on that
scenario by introducing test teams to the process much sooner.
A relatively modest, first iteration may only address 15 percent
of the full set of project requirements, but as a functional module
of working code, the completed iteration can be demonstrated,
and continuously tested. So any defects discovered by test teams
at this early stage have a proportionally small impact on the
larger development team, who make the fixes, then proceed
to the next iteration where more of the requirements can be
incorporated into the working version (iteration) of the software.

The number of iterations required by any software project
depends on many factors, of course, such as the complexities
of the team’s supply chain, the complexity of the software under
development, the physical location of team members (are they
geographically distributed, perhaps internationally? or are they
co-located under a single roof?), and the competitive demands
that determine optimum time to market. During any software
delivery process, “When do we release?” is a key question for
the business with no simple answer. The business must consider
project-specific variables, such as the cost of delays, the opportu-
nity value of early delivery, marketplace quality expectations,
and the costs associated with defects. Ultimately, the delivery
strategy will be based on the actual or perceived importance of
each variable.

4 Smarter quality management

The optimal time to release
The optimal time to release is when the total risk exposure is
minimal, typically around the time where the risk associated
with competitive threats starts to outweigh the risk reduction
associated with further quality improvements, as illustrated in
Figure 1.

The best time to release varies widely based on your software
delivery strategy and your target market. Software delivery for
both IT (internal business systems) and smart products (products
using embedded software, including “system-of-systems” design)

is typically dominated by one of two motivators, depending
on the organization’s target market: time to market (schedule
driven), or quality impact (quality driven).

Schedule-driven delivery implies “deliver on time, regardless
of other factors” and is often used in industries where “Time to
market is king.” Consumer electronics is one good example, as
well as automotive, segments of the medical industry, and other
markets, where product teams try to gain a first mover advantage
over their competitors, (almost) regardless of the risk associated
with inadequate quality. It should also be noted that schedule-
driven delivery is not limited to the systems space (i.e., the many
embedded software devices industries). Many IT development
teams use schedule-driven delivery when trying to enhance their
end user experience and increase market share, taking away from
their competitors, often risking quality in the process.

Figure 2 represents the risks associated with schedule-driven
software delivery. The green line represents the risks associated
with the delivery of your product being reduced over time. The
red lines represent the risk of competitors stealing your market
away increasing over time, as well as risks associated with oppor-
tunity costs.

The intersection is the point in time where the sum of both
lines, i.e. the total risk, is the lowest. As seen in Figure 2, this
point moves to the left as the environment you are in is more
competitive in nature. (Notice that the intersection point is
moving up as well.)

High opportunity cost;
Strong competition

Lowest
Overall
Risk
Exposure

Many
critical
defects

Low opportunity cost;
Weak competition

Few
minor
defects

Time

R
is

k
E

xp
os

ur
e

Quality risk (= Probability of defects x loss due to defects)
Competition risk (= Probability of competitors x size of loss to competition)
Total risk (= Sum of all risks)

Figure 1. Minimal risk exposure is when opportunity cost and competitive
threats outweigh risk reduction related to quality improvements.

5IBM Software

Quality issues are often magnified in a schedule-driven lifecycle,
given that software contractors frequently get paid on a time and
materials basis, regardless of the quality of software they deliver.
In many cases, you may even end up paying extra for the deliv-
ery team to fix their own defects, so the potential costs of defects
to the end user can add up quickly. And here’s an interesting sta-
tistic: According to the Carnegie Mellon Software Engineering
Institute, “Data indicate that 60 - 80 percent of the cost of
software development is in rework.”1

Time

Risk
Exposure

Time to Market is king!
Example: Consumer Electronics

High opportunity cost;
Strong competition

Figure 2. The blue dots show possible release points, with points of minimal
risk moving forward as competition intensifies (red lines).

Time

Risk
Exposure

Quality is king!
Example: Safety Critical applications

Criticality of
Defects

Figure 3. The more critical the implications of defects are, the more time it
takes to get to the lowest risk point where release is possible.

Quality-driven delivery can also be costly but for different rea-
sons. As shown in Figure 3, the more critical any defects might
be regarding quality, the longer it takes to get to an optimum
release point.

The release timing for this approach is governed by achieving
the right quality, moving the optimal time to release further to
the right—but how do you define that? Zero defects is practi-
cally impossible to achieve, given that there is no way to
determine how many defects still exist in a piece of code or the

6 Smarter quality management

Time

Optimal
Time to Release

Time to
Market

Figure 4. To deliver early, at an improved quality, reduce your risk at an earlier
point in the lifecycle.

probability of detecting those defects in use. A target based on
“defects fixed” might be more realistic—but it’s still impossible
to know the number of remaining defects in the product.

Risk-driven delivery implies delivering your software when
the risk is minimal. But in practice, we always need to release
“early”—earlier than we can. Which typically implies increasing
the risk, right? At least this is a commonly held view, but is it
always the case?

Within the risk-driven model, the optimal release time is when
risks are sufficiently reduced (not completely eliminated) and
time to market has not been wasted. In other words, some time
is needed to reduce the most significant risks, but the company
cannot afford to address every known risk because the opportu-
nity to beat the competition is f leeting.

So the question is, how can we get to this point sooner? How
do we compress the release date from the optimal intersection
(shown as a blue circle in Figure 4) to a point earlier in time?

We cannot simply cut the time requirement, because as we move
left on the green line, the risk goes higher. But what if we could
compress the curve described by the green line—push it down,
so to speak? Then we could not only deliver sooner but lower
the overall risk as well. The intersection point will move down
and to the left. This improved scenario is shown in Figure 4.

Risk-driven delivery offers a practical improvement over these
two extremes (i.e. schedule driven vs. quality driven) because it
more cost-effectively balances quality versus time-to-market
considerations. A risk-driven strategy is a refinement of a
quality-driven approach that optimizes risk exposure against
development cost and time.

For the remainder of this discussion, we will assume that the
software delivery lifecycle is based on a risk-driven approach.
We will explore how to bend the green curve shown in Figure 4
downward and to the left, for reduced time to market without
compromising the risk profile.

7IBM Software

Understanding quality management: It’s
more than simply testing
If a faster reduction in risk is the goal, how do you achieve it?
In traditional testing practices, testing is considered a late stage
activity, squeezed between an often-late development handoff
date and an immovable ship date. Not only does this practice
fail to yield the benefits of incremental, iterative development
techniques explained earlier; it also minimizes, or at best
reduces, the amount of time spent on quality assurance, and
makes fixes all the more difficult unless you’re willing to
compromise the release date.

As noted earlier, iterative development techniques greatly
improve this situation by having functional units tested
continuously throughout the lifecycle, rather than leaving
the testing phase until project completion.

And quality management takes this improvement a step further.2
Quality management, which is the implementation of best prac-
tices to proactively reduce risk throughout the whole lifecycle, is
a risk reduction mechanism in its own right. By choosing quality
management practices with the potential to deliver a positive
ROI within a relative short amount of time, you can justify risk
reduction measures from not only a quality standpoint but also a
financial standpoint.

Approaching quality from a full lifecycle perspective should
not seem like such a radical idea. After all, testing a product is
an engineering task just like development: the requirements
need to be analyzed by the test architect, its testing strategy has
to be defined, the relevant test benches and test frameworks

need to be built (designed and implemented), etc. These
engineering development processes are very similar to the
ones followed during product development. In fact, product
development and quality management can be viewed as two
parallel development threads emanating from the same require-
ments, with many synchronization points between the threads,
up to the point of the testing activity itself where a verdict is
made based on meeting expectations or not (as expressed in the
test cases). This applies to both the traditional development
process as well as agile methods (with variants such as test-first
development and test-driven design). The important point is
that QM is a thread that must run in parallel to development,
especially in agile development.

Although a complete discussion of QM is beyond the scope of
this paper, we can show how QM reduces risk—and thus allows
earlier software delivery without compromising quality—by
demonstrating how one of the quality management best prac-
tices can improve iterative testing within the software develop-
ment lifecycle.

●● Continuous testing and service virtualization to avoid the
“big bang”

It has already been shared that in traditional development
practices teams typically defer testing until late in the develop-
ment lifecycle. But, why does this happen? The logical expla-
nation is that teams simply can’t test critical business scenarios
end to end until all the components have been developed
and deployed in a test environment. However, when all of
the “pieces” are brought together for the first time, many

8 Smarter quality management

organizations experience what is referred to as the “big bang”
and a large number of defects are discovered. Some of the
defects are so major teams are forced to rethink their applica-
tion architecture or design decisions and return to the drawing
board. Some may in fact consider starting over. So, it might be
said that deferring testing until later is injecting unnecessary
risk and could delay software release.

As a way to address this risk, Agile techniques, like test driven
development, force teams to write tests before a single line
of code is developed. However, to what level do these tests
validate the application as a whole? Are the developers really
writing tests which validate the dependencies between applica-
tion components? One technique your organization may have
undertaken is to create mocks or stubs for simulating missing
functionality, but this ad hoc practice is not a very good use of
a developer’s time or your money. Organizations will also soon
realize that this approach to enabling continuous integration
testing is not scalable and cannot be easily incorporated into
one’s automated build and deployment process. Yet many
believe the combination of continuous testing and continuous
deployment is a critical need. So, how do teams make the
unavailable available for earlier and continuous testing without
having to write ad hoc stubs?

This point is where service virtualization comes in. Service
virtualization simulates the behavior—functionality and
performance—of select components within an application
to enable end-to-end testing of the application as a whole.

By creating and deploying virtual components to simulate the
missing functionality, functionality provided by components
unavailable due to a number of reasons, development teams
can achieve continuous testing of the application end-to-end
much earlier, discover defects sooner, and reduce project risk
so teams can release software more often.

One must also look at the value service virtualization can
bring to an organization when considering the cost of quality.
Testing is expensive and that cost is increasing as applications
become more complex. You need not look beyond the cost
of provisioning a test environment to see how service
virtualization can save money and time. Test teams spend a
large portion of their time dealing with testing interruptions—
interruptions like waiting for test environments to be
available, recycling test environments, or deploying the
latest build so they can begin testing.

In fact, this could account for 40 percent or more of the
tester’s time. Service virtualization decreases the amount of
time testers spend on dealing with interruptions, Taking it
to the next level, teams that incorporate automated and
continuous testing as part of the deployment process receive
constant feedback on the quality of the latest release. This
approach also frees up the tester’s time and allows them to
increase the level of testing by executing more value-added
activities like exploratory testing—which means testing
applications to determine how they actually work and where
significant defects are discovered.

9IBM Software

●● Improved collaboration between the QA team and other
stakeholders: From talking to customers, we learned that
on average, a tester spends only about 60 percent of the
remaining time performing actual testing, test planning,
or test reporting. The other 40 percent is related to activities
that are collaborative in nature, such as clearing up the
requirements with domain experts or business analysts, or
exchanging emails and phone calls with members of the
development team. This gets worse in distributed organiza-
tions. If you could track and manage the collaboration, it will
not only reduce your risk associated with lack of communica-
tions and misunderstandings, but also reduce the time for
collaborative tasks by 20 - 50 percent.

●● Automated reporting: Creating a report, especially one that
goes to high level management, requires data collection from
many sources, sometimes from teams that are in different
time zones, and then formatting this data appropriately. If
you could automate this activity, your team will probably use
it more often and take the appropriate decisions in “real time
thus reducing your risk. How much would this save you?

These are some of the quality management best practices, each
of which contributes to risk reduction and therefore increased
quality and reduced cost. Now, let’s consider the overall impact
of quality management on the defects density and the cost of
fixing them.

,”

The overall business impact of quality
management
Quality management best practices center on quality synchroni-
zation points across the whole development lifecycle. We have
discussed the benefits of continuous testing enabled using service
virtualization, and we have brief ly noted collaboration between
stakeholders and the QA team, as well as automated reporting.
Other best practices include: allowing quality professionals
to contribute to the team effort from the very beginning of a
project; the integration of practitioners doing the testing as
part of quality management; and the use of consolidated quality
dashboards.

Together, these quality management best practices can benefit
the overall business in measurable ways. Using CMMI3 as
a proxy for the maturity of the development process,
Figure 5 shows that the overall business impact of quality
management is quite compelling.

10 Smarter quality management

Let’s assume an organization at CMMI level 2, with 1000 defects
detected during functional testing. Figure 5 shows that on
average, without QM practices, about 30 percent of the defects
are being detected in functional testing (the left, blue bar),
and therefore the total number of defects is 3300. However,
by applying QM practices, the defect detection rate increases
to 58 percent (the right, green bar), therefore detecting
1914 (58 percent of 3300), or 914 more defects.

As fixing defects during User Acceptance Testing (UAT) is about
seven times more expensive than during unit/integration test,
and assuming a fix cost of US$120 per defect during unit/inte-
gration test, fixing 914 defects in UAT is already increasing the
cost by over half a million dollars!

And this does not even take into account the reduction in the
number of defects that result from applying QM practices in
the first place, which makes the savings even more significant.
This also does not take into account less tangible savings, such
as increased quality, customer retention, and other implications
of quality as a differentiating asset.

As most software development teams are around CMMI levels
2 or 3, the benefits and the savings described above apply to
most of the industry. But as development teams become more
mature, apply QM practices, and move up to CMMI levels
4 and 5, the focus shifts into less obvious—but for some, even
more important—benefits, such as reduction in the number
of defects that are introduced in the first place, measured
improvements around planning and execution of quality
related activities, customer retention, and leveraging quality
as a differentiating asset.

Better quality + lower cost = improved
competitiveness
In this paper, we have described several improvements to
methods used by software teams in the design, testing, and
deployment of software for systems or IT. Teams may use these
quality management and continuous testing methods to deploy
that software more quickly, while mitigating quality-related risks
throughout the lifecycle. The multidisciplined practice of quality
management is breaking the functional and organizational silos
that are so common in today’s companies. It encourages an
analytical process that’s closely integrated with the development
lifecycle.

Figure 5. Graphing percentage of defects detected (Y axis) against an
organization’s software development maturity level (X axis).

Impact of Quality Management on Process Efficiency

15%

30%

60%

75%

85%

32%

58%

76%
85% 87%

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

1 2 3 4 5

CMMI Levels W/O QM W QM
20% 40% 40% 40% 10% QM Impact:

11IBM Software

Analyzing the market and best practices shows that business
outcomes can be optimized, and that smart improvements
within the realm of proven best practices, continuous testing,
collaborative test planning and automated reporting—a combi-
nation of disciplines that defines quality management—can help
address the need for increased innovation with more competitive
products and services to your customers.

The IBM® Rational® organization is ready to demonstrate
these techniques to you. With straightforward adjustments to
your investments, deployment practices, and tooling, we can
help you realize these benefits within a time frame that best
suits your business’s needs.

We look forward to working with you!

For more information
To learn more about the IBM Rational quality management
offerings, please contact your IBM marketing representative or
IBM Business Partner, or visit the following website:
●● ibm.com/software/rational/offerings/quality/ or
●● ibm.com/software/rational/servicevirtualization/

Additionally, IBM Global Financing can help you acquire
the software capabilities that your business needs in the most
cost-effective and strategic way possible. We’ll partner with
credit-qualified clients to customize a financing solution to suit
your business and development goals, enable effective cash
management, and improve your total cost of ownership. Fund
your critical IT investment and propel your business forward
with IBM Global Financing. For more information, visit:
ibm.com/financing

About the authors
Moshe Cohen is the Market Manager for IBM Rational
quality management offerings. In his current role, he works
closely with customers, including managers and practitioners,
to drive IBM Rational quality management offerings in both
the IT and embedded systems spaces. Prior to this, he was with
Telelogic, defining and driving its Model Driven Testing solu-
tions. He has extensive hands-on experience in the specification,
development, and testing of C3I medical and telecom applica-
tions, including technology adoptions and driving process
improvement programs. He received his EE and M.Sc in
mathematics and computer sciences, both with honors, from
Beer-Sheva University in Israel.

Allan Wagner is a Technical Marketing Manager and Evangelist
with IBM Rational, driving thought leadership, strategic initia-
tives, and tangible solutions around the adoption of Rational
ALM for IT and manufactured products. Focusing specifically
on quality management and testing during his ten years of
practical field experience, Al has assisted, mentored, and enabled
both internal IBM and external customer teams to address their
IT application infrastructure, development, implementation, and
operations challenges. Al is a frequent conference speaker on
topics of software quality products, principles, and techniques
and has authored numerous papers.

http://www.ibm.com/software/rational/offerings/quality/ or
http://www.ibm.com/software/rational/servicevirtualization/
http://www.ibm.com/financing

 © Copyright IBM Corporation 2013

 IBM Corporation
Software Group
Route 100
Somers, NY 10589

 Produced in the United States of America
August 2013

 IBM, the IBM logo, ibm.com, and Rational are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at ibm.com/legal/copytrade.shtml

 This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

 THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

1See the Carnegie Mellon Software Engineering Institute’s CEO and
founder’s message at http://www.sei.cmu.edu/about/message/

2For a more complete discussion of quality management practices, download
the paper “Value-driven quality management for complex systems: Six
strategies for reducing cost and risk” at http://www14.software.ibm.com/
webapp/iwm/web/signup.do?source=swg-rtl-spsm-wp&S_PKG=
wp_RQM_VALUEDRVN_071510

3Capability Maturity Model Integration. CMMI is a staged approach to
process improvement that defines incremental levels of maturity in
software engineering organizations. For more information see the
Software Engineering Institute (Carnegie Melon University) website at
http://www.sei.cmu.edu/cmmi/

RAW14273-USEN-02

Please Recycle

http://www.ibm.com/legal/copytrade.shtml
http://www.sei.cmu.edu/about/message/
http://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swg-rtl-spsm-wp&S_PKG=wp_RQM_VALUEDRVN_071510
http://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swg-rtl-spsm-wp&S_PKG=wp_RQM_VALUEDRVN_071510
http://www14.software.ibm.com/webapp/iwm/web/signup.do?source=swg-rtl-spsm-wp&S_PKG=wp_RQM_VALUEDRVN_071510
http://www.sei.cmu.edu/cmmi/

	Untitled
	Smarter quality management
	The fast track to competitive advantage
	The nature of software development
	Quality management in the software devel
	The optimal time to release
	Understanding quality management: It’s m
	The overall business impact of quality m
	Better quality + lower cost = improved c
	For more information
	About the authors

