
µTrace®

Intelligent Debugging and Tracing
for ARM® Cortex®- M

2

A all-in-one debug and trace solution is provided by Lauterbach in response to the breakthrough of
Cortex-M processors into the embedded market. This cost effective system called μTrace specifically
targets the Cortex-M family.

•	 Support for more than 1000 different Cortex-M

based chips

•	 USB 3 interface to the host computer

•	 Support for standard JTAG, Serial Wire Debug,

and cJTAG (IEEE 1149.7)

•	 256 MByte trace memory

•	 10- / 20- / 34-pin half-size connector for target

hardware and a wide variety of adapters to work

with other connectors

•	 Voltage range 0.3V to 3.3V (5V tolerant inputs)

•	 Support for ARMv8-M when available

•	 C/C++ debugging

•	 Simple and complex breakpoints

•	 Read and write memory during program runs

•	 Flash programming support for FLASH memory on

microcontrollers and external flash on the target system.

•	 OS-aware debugging provides the user with symbolic

debugging capability in operating system.

With the specification of the OS name a menu is added

to TRACE32 PowerView that allows easy access to

task lists and other OS specific information.

•	 The LPC43xx from NXP is the first chip that contains

a Cortex-M4 and a Cortex-M0. It goes without saying

that the μTrace includes the approved TRACE32 AMP

multicore debugging technology.

Cortex-M processors may include an Instrumentation Trace

Macrocell (ITM) and an Embedded Trace Macrocell (ETM).

In this case the μTrace can provide the following trace

features:

•	 4-bit ETM in Continuous mode for Cortex-M3 / M4 / M7

•	 Support for onchip trace buffers (ETB) if available

•	 Support for Micro Trace Buffer (MTB) for Cortex-M0+

•	 ITM over TPIU for Cortex-M3 / M4 / M7

•	 ITM over Serial Wire Output

•	 Combining ETM and ITM trace data allows a seamless

integration of read/write accesses into the instruction

flow and OS-Aware tracing (for details refer to page 3).

•	 Analysis of task and function run times

•	 Code coverage analysis

•	 On-the-fly transferring of trace-data to the host computer

•	 Energy measurement using TRACE32 Analog Probe

•	 Trace the execution state of all branch and non-branch

instructions

Intelligent Debugging and Tracing for ARM® Cortex®- M

Instruction flow with data accesses (ETM&ITM)

Fig. 1:	 By combining ETM and ITM trace data, read/write accesses can be integrated
seamlessly into the instruction flow.

Analog Devices ADuCM3

Atmel SAM3, SAM4

Cypress FM3, FM4, PsoC 5

Infineon XMC1000, XMC4000

Microsemi SmartFusion, SmartFusion2

Nordic Semi nRF51, nRF52

Nuvoton NuMicro

NXP LPC800, LPC1xxx, LPC4300, Kinetis

Samsung S3FM02G

Silicon Labs EFM32

STMicroelectronics STM32

Texas Instruments TIVA-C, Concerto

Toshiba TX00, TX03, TX04

Extract from supported
vendors and chip families

	 μTrace® Characteristics

	 Debug Features

	 Trace Features

3

Combining ETM and ITM Trace Data

For Cortex-M3 / M4 / M7 processors, trace information
can be generated from two different sources (see Fig. 3).

The ETM generates information about the executed
instructions. The ITM generates information about
the performed read/write accesses assisted by the
Data Watchpoint and Trace Unit (DWT).

The ITM trace packets for read/write accesses con-
tain the following information: data address, data val-
ue, program counter. Through analysis of the program
counter, these separately generated data accesses
can be seamlessly integrated into the instruction flow
(see Figure 1).This in turn leads to significantly faster
error location. The cause of an error such as an in-
correct data value being written to an address can be
easily found if the write accesses are embedded into
the overall instruction flow.

Some uncommon Cortex-M7 chips have a more
powerful data-trace via ETMv4. µTrace supports also
this kind of trace (currently up to 4 trace pins).

Statement coverage on running system

Function coverage on running system

ARM® Cortex®-M3/M4/M7 Core

Formatter

DWT
4 hardware watchpoints
on load/store operations

ITM
Instrumentation Trace

Macrocell

ETM
Instruction flow

only

TPIU
Trace Port Interface

Unit

Fig. 3:	 Block diagram of the trace logic in a Cortex-M3 / M4 / M7 processor.

Instruction flow with task switches (ETM&ITM)

Timing diagram for task switches (ITM) Timing diagram for task MIPS (ETM&ITM)

Call tree for task "sens1" (ETM&ITM)

Fig. 2:	 Through the combination of ETM and ITM trace data, extensive trace analysis can be provided for the eCos operating system.

www.lauterbach.com/1658

Lauterbach GmbH
Altlaufstraße 40 • 85635 Höhenkirchen • Tel: +49 8102 9876 0 • sales@lauterbach.com
Visit our official Youtube channel and discover our new tutorials: www.youtube.com/user/lauterbachgmbh

OS-Aware Tracing

If an operating system is running on the Cortex-
M3 / M4 / M7, task switch information becomes essen-
tial for the trace analysis.

The ITM can generate trace information for the kernel's
write cycle of the current task identifier to the corre-
sponding OS variable.

As described above the write access information can
be integrated seamlessly into the instruction flow trace.
As a result also the task switch information is integrated
into the instruction trace. This improves the readability
of the trace listing (see Figure 2 on page 3). The inte-
gration of the task switch into the instruction flow trace
also forms the basis for the run-time analysis shown in
this figure.

Three Recording Modes

To record the trace information generated by the
Cortex-M3 / M4 / M7 processors, μTrace supports three
modes:

•	 FIFO and STACK mode
	 Storing the information in the 256 MByte memory of

the TRACE32 μTrace.

•	 STREAM mode
	 Streaming the information to a hard-disk on the host

computer through USB 3 with up to 100 MBytes/s.

For the first two recording modes, the trace information
is collected and the trace analysis is undertaken after
recording is completed. Each recording mode has its
specific strengths.

FIFO is the most commonly used mode. It is quick and
often all that is needed for error location and run-time
analysis.

STREAM mode:
For some kind of analysis (e.g. code-coverage) the
result can be significally improved by collecting trace
data for a long time period. In this case STREAM mode
is the best option.

The STREAM mode, however, places high demands
on the debug environment:

•	 The large amount of data that results from stream-
ing requires a 64-bit TRACE32 executable. This is
needed to handle the large number of trace entries
that will be collected.

•	 The transfer rate between μTrace and host com-
puter must be fast enough to stream all trace data
without data loss. The 256 MByte memory of the
μTrace is used to buffer load peaks from the trace
port (TPIU).

Trace Streaming is particularly suitable for perform-
ing object statement and object branch coverage.
The coverage analysis can be followed live on the
screen and the test results are visible immediate-
ly (see Figure 4). Lines marked as “ok” have already
been covered, lines marked as "not exec" may require
additional test stimuli.

For more information visit: www.lauterbach.com/1658

Statement coverage on running system

Function coverage on running system

ARM® Cortex®-M3/M4/M7 Core

Formatter

DWT
4 hardware watchpoints
on load/store operations

ITM
Instrumentation Trace

Macrocell

ETM
Instruction flow

only

TPIU
Trace Port Interface

Unit

Fig. 4:	 Trace Streaming enables code coverage analysis to be followed live on the
screen.

