Intelligent Debugging and Tracing
for ARM® Cortex®-M

LAUTERBACH IA
DEVELOPMENT TOOLS

Intelligent Debugging and Tracing for ARM® Cortex®-M

A all-in-one debug and trace solution is provided by Lauterbach in response to the breakthrough of
Cortex-M processors into the embedded market. This cost effective system called pTrace specifically

targets the Cortex-M family.

HTrace® Characteristics

e Support for more than 1000 different Cortex-M
based chips

e USB 3 interface to the host computer

e Support for standard JTAG, Serial Wire Debug,
and cJTAG (IEEE 1149.7)

e 256 MByte trace memory

e 10-/20-/34-pin half-size connector for target
hardware and a wide variety of adapters to work
with other connectors

e \/oltage range 0.3V to 3.3V (5V tolerant inputs)

e Support for ARMv8-M when available

Debug Features

e (C/C++ debugging

e Simple and complex breakpoints

e Read and write memory during program runs

e Flash programming support for FLASH memory on

microcontrollers and external flash on the target system.

e (OS-aware debugging provides the user with symbolic
debugging capability in operating system.
With the specification of the OS name a menu is added
to TRACE32 PowerView that allows easy access to
task lists and other OS specific information.

e The LPC43xx from NXP is the first chip that contains
a Cortex-M4 and a Cortex-MO. It goes without saying
that the uTrace includes the approved TRACE32 AMP
multicore debugging technology.

Instruction flow with data accesses (ETM&ITM)

& setup... || [Goto.... || #iFind... || A Chart || B Profile || EEMIPS | % More| X Lesd
1

record run address cycle |data symbo’

ti.back

344 od=data|0x1000;
| arr ré,r2,#0x1000
346 _len = data;
str r2,[r9,#0x180]
on|

» o4 [y

-01981060

4. 660us

2 g
T:680085D0 pirace

348 ADC1->CR2 = 0x005E0001;

| str _ r7,[r5,#0x8]
349

| b~ Ox680085A2 -
. ‘

Fig. 1: By combining ETM and ITM trace data, read/write accesses can be integrated
seamlessly into the instruction flow.

LAUTERBACH ‘

- B
h|‘|||v|-||'|—|||v|'||||'||'|||||||‘ d

Analog Devices ADuCM3

Atmel SAM3, SAM4

Cypress FM3, FM4, PsoC 5

Infineon XMC1000, XMC4000

Microsemi SmartFusion, SmartFusion2

Nordic Semi nRF51, nRF52

Nuvoton NuMicro

NXP LPC800, LPC1xxx, LPC4300, Kinetis

Samsung S3FM02G

Silicon Labs EFM32

STMicroelectronics STM32

Texas Instruments TIVA-C, Concerto

Toshiba TX00, TX03, TX04

Cortex-M processors may include an Instrumentation Trace
Macrocell (ITM) and an Embedded Trace Macrocell (ETM).
In this case the pTrace can provide the following trace
features:

Trace Features

e 4-bit ETM in Continuous mode for Cortex-M3/M4/M7

e Support for onchip trace buffers (ETB) if available

e Support for Micro Trace Buffer (MTB) for Cortex-MO+
ITM over TPIU for Cortex-M3/M4/M7

e |TM over Serial Wire Output

e Combining ETM and ITM trace data allows a seamless
integration of read/write accesses into the instruction
flow and OS-Aware tracing (for details refer to page 3).

e Analysis of task and function run times

e (Code coverage analysis

e On-the-fly transferring of trace-data to the host computer

e Energy measurement using TRACE32 Analog Probe

¢ Trace the execution state of all branch and non-branch
instructions

A TRACE2 Poneien P

File FEdit View Ver Bresk Run CPU Misc Trace Pef Cov STM32FIOx eCos Window Help

(M|t n[e o | Hdus sas @ : o
H E = n n
l Instruction flow with task switches (ETM&ITM) Call tree for task "sens1" (ETM&ITM)
£ Bz Trace.List List. TASK DEFault [r=)[-=- 3] | = B:Trace STATistic. TREE /TASK “sensl® (=@]l=]
(& setup... | 13 Goto... || $3Find... || A chart || Bl Profile ! MIPS | % More| X LES§ | w Setup..][mGroupE](=z Coan l n Goto][J Deta\led]@ Mesting || % Chart
record run [address lcycle |data symboT [ti.back 1| | Funcs: . total
'm'hne void Cyg SchedThread_Implementation::timeslice_restore(:";" tree avr count |
{ = = (root) £9.600ms - a
BT Cyg_Scheduler_Implementation::times]ice_count[CYG_KERNEL_CPU_THIS()] = times = Cyg_Thread: :dela 0.000us 0.
F ldr r3,[r4,#0x24] = - Cyg_Thread: :delay 148.249us 578.
. i & Cyg_Scheduler ::unlock_inner 41.429%us 578.
235 current_thread[CYG_KERNEL_CPU_THIS()] = current; // restore cu__ r: Cyg_Scheduler_Implementation::schedule 6. 572us 577.
| str r4,[r6 [D(yg HardwareThread: : thread_entry 13.690us i
--— THREAD magic = 68016308, id = 7., name = sensl e g Schedu]er :thread_entry 13.690us i1,
-48245317 D:68046E18 wr-Tong 68016308 Schedu'\er _Base: :current_thread 0.100us E\Cyg_;ﬁ/arm :disable 29.784us 577.
48245316 T:6800C6D6 ptrace ..g_Scheduler: :unlock_inner+0x6A 0.060us . Cyg_ Scheduler: :unlack_inner 22.722us 577.
1 = Cyg,Thread: :sleep 28.771us 577.
- X . X X . — . Cyg_Scheduler_Implementation: :rem_thread 11.431us 577.
inline void Cyg SchedThread_Implementation::timeslice_restore(B Cyg_Alarm::initialize 26.953us 577
{ . Cyg Counter::add_alarm 8.927us S77.
317 | Cyg_! Schedu'ltEr Il]mﬂemerrtatwn itimes]ice_count[CYG_KERNEL_CPU_THIS()] = t1mes « cyg_thread_delay 149.755us 578.
str r3, frl0
i N n] b
|- Timing diagram for task switches (ITM) T|m|n g diagram for task MIPS (ETM&ITM
I
r4 BTrace.Chart. TASK [=|[=|[= | | Bl E:MIPS.PROfileChart. TASK (= [=][=]
B setup..]L Groups... I[" Confg][I} Goto... H]‘j Flnd] Ar In || b4 Out||MM Full & setup... || ii Groups... | B8 Config...| 13 Goto... || #3Find... || 4p In |[4 Dut MM Full| & I || X out L
-91.900s -91.800s 10.000us [l Cunknown) [l heapsort [create B quicksort
ranqe«\] | | -57.580s -57.5605 -57.5405 -57.5205
4 5 B s o 5 b o ;% 6w o instr/sec L L L L 1
N | I 4000000.0 -
u n =
quicksortiimm mm | | — . L — 2000000. 0 =
sens1iy I
shellsortiy| I ; . . I P 0.0 B
v < = 3 < [m] v < =] »

emulate devices [trace][Data][Var H List][PERF][S¥Stem][Step][Go][Break][s¥mbol H Frame][Register FPU other][previous
ST:6800827E \\a\demo\heapsorHUxSZ heapsort stopped | | MIX |UP

Fig. 2: Through the combination of ETM and ITM trace data, extensive trace analysis can be provided for the eCos operating system.

For Cortex-M3/M4/M7 processors, trace information
can be generated from two different sources (see Fig. 3).

The ETM generates information about the executed
instructions. The ITM generates information about
the performed read/write accesses assisted by the
Data Watchpoint and Trace Unit (DWT).

IT™
Instrumentation Trace

The ITM trace packets for read/write accesses con-
tain the following information: data address, data val-
ue, program counter. Through analysis of the program
counter, these separately generated data accesses
can be seamlessly integrated into the instruction flow
(see Figure 1).This in turn leads to significantly faster

error location. The cause of an error such as an in- TPIU
. , T Port Interf
correct data value being written to an address can be el
easily found if the write accesses are embedded into
the overall instruction flow. Fig. 3: Block diagram of the trace logic in a Cortex-M3/M4/M7 processor.

Some uncommon Cortex-M7 chips have a more
powerful data-trace via ETMv4. uTrace supports also
this kind of trace (currently up to 4 trace pins).

www.lauterbach.com/1658

OS-Aware Tracing

If an operating system is running on the Cortex-
M3/M4/M7, task switch information becomes essen-
tial for the trace analysis.

The ITM can generate trace information for the kernel's
write cycle of the current task identifier to the corre-
sponding OS variable.

As described above the write access information can
be integrated seamlessly into the instruction flow trace.
As a result also the task switch information is integrated
into the instruction trace. This improves the readability
of the trace listing (see Figure 2 on page 3). The inte-
gration of the task switch into the instruction flow trace
also forms the basis for the run-time analysis shown in
this figure.

Three Recording Modes

To record the trace information generated by the
Cortex-M3/M4/M7 processors, uTrace supports three
modes:

¢ FIFO and STACK mode
Storing the information in the 256 MByte memory of
the TRACES32 pTrace.

e STREAM mode
Streaming the information to a hard-disk on the host
computer through USB 3 with up to 100 MBytes/s.

For the first two recording modes, the trace information
is collected and the trace analysis is undertaken after
recording is completed. Each recording mode has its
specific strengths.

FIFO is the most commonly used mode. It is quick and
often all that is needed for error location and run-time
analysis.

LAUTERBACH ‘

STREAM mode:
For some kind of analysis (e.g. code-coverage) the
result can be significally improved by collecting trace
data for a long time period. In this case STREAM mode
is the best option.

The STREAM mode, however, places high demands
on the debug environment:

e The large amount of data that results from stream-
ing requires a 64-bit TRACES2 executable. This is
needed to handle the large number of trace entries
that will be collected.

e The transfer rate between pTrace and host com-
puter must be fast enough to stream all trace data
without data loss. The 256 MByte memory of the
uTrace is used to buffer load peaks from the trace
port (TPIU).

— CPU M

Wi
MK +oclrnimE g

e Ped Cov STMIFIO: elon Window Help

Hue ses e P
Function coverage on running system

@ B=COV. Lt Medule = iml o
& sewp... | M Gote.. | us | + Ak | 5 ioed. | 53 swe.. | @0
addrpss tree coverage executed 0% S 166

Pr 1 LAF i vertors paﬂ"s‘,ﬂ FEELIN -

P:6E0081B0--GE00ET 3F dema partial | 50, 702%

P:BEODE1A0- -AEH0E205 W gs_h ok 100, D00%

£:EB008708--5B008226 # quicksort partial | 81, 313%

P:6EODB2 2C--6B00B203 heapsort partial | 95, 23E%

P:GEDDE2DA - -GE00E342 shell_h partial | 91.071%

P:BB008344--6B008377 shellsort partial | B4.615%

P:OB0083TE--BE0053AR # create_randon_1fsr 54, B15%

partial | &]
--GE00B508 5 Cyg_user_start 0. 000

Statement coverage on running system

i] [BList Vivithresd 1 /COVeragel ==

----- M Ower | -lr Ret {_R.ullmv. éa.p - b;n T I_I nmknnij‘m» Find:
addr Tine : code labe] i

nEver

nat exec
ok VT:REOOE6AA
ok WMT:EE0086AE
ok VMT:6E0086EZ
ok VMT:E8008684
WIT : GRODBERE |DOFE

BOEMONIC comment
while (msgecyq mbox_get(to_create)] =0 J;

bieg OxGEDORGAA
222 Ten=g_len;

ok WIT:GBOOBGRS |F

235

ok WIT:GE0085EC

223
ok WIT: bmagg

create_random_ifsrimegasarr , Ten):
lersesl; n

larw=0ud0;
ok WMT:6E0085C0 -
ok 225
ok WMTIGE0086C2
ok \WT:EE0086CH

create_random_lfsrimsg-zarr, len);

=

|| emuatate

trigger devices e Datn ar

Fig. 4: Trace Streaming enables code coverage analysis to be followed live on the
screen.

Trace Streaming is particularly suitable for perform-
ing object statement and object branch coverage.
The coverage analysis can be followed live on the
screen and the test results are visible immediate-
ly (see Figure 4). Lines marked as “ok” have already
been covered, lines marked as "not exec" may require
additional test stimuli.

For more information visit: www.lauterbach.com/1658

AltlaufstraBBe 40 * 85635 Hohenkirchen ¢ Tel: +49 8102 9876 0 sales @lauterbach.com
Visit our official Youtube channel and discover our new tutorials: www.youtube.com/user/lauterbachgmbh

