
Satisfying ASIL-D Code Coverage Objectives in the 

Target Environment without Code Instrumentation 

Embedded Testing ─ Munich • 04 / July / 2019 



2 / 37 04/July/2019 

• Introduction 

• Modern Automotive Chips 

• Making Use of the Trace Capability 

• Measuring Code Coverage without Instrumentation 

• Conclusion 

 

 

 

 

Agenda 



3 / 37 04/July/2019 

Functional Safety for Complex Software 

“Software is eating the world”* is catching the automotive industry 

• Increasing software complexity 

• Bundling of software components with mixed criticality into a small number of powerful ECUs 

• Demand for high software portability across different configurations and platforms 

 

* Marc Andreessen, 2011 

 
 

 

Software Complexity Functional Safety ISO 26262 



4 / 37 04/July/2019 

Software Verification in ISO 26262 

• Multiple testing stages with 
different focuses 

• Code coverage as measure of 
completeness and adequacy of 
testing activities 

• Emphasis of testing in the target 
environment 

 

   Statement Coverage 

      Branch Coverage 

     MC/DC (ASIL D) 

   Function Coverage (ASIL D) 

          Call Coverage (ASIL D) 

Testing of the 

Embedded Software 

Integration test 

Unit test 

Coding 



5 / 37 04/July/2019 

Goal of the Presentation 

Introduce a code coverage measurement method that 

• is applicable to all code coverage metrics mentioned in ISO 26262 

• works without code instrumentation  

• is carried out in the target environment 



6 / 37 04/July/2019 

ELF File 

ELF File 

Object  

Code 
 

for selected 

optimization level 
 

 

Debug  

Information 
 

source code 
 

 
object code 

Cross Compiler/  

Linker 

AUTOSAR  

Source Code 

Application  

Source Code 



7 / 37 04/July/2019 

Agenda 

• Introduction 

• Modern Automotive Chips 

• Making Use of the Trace Capability 

• Measuring Code Coverage without Instrumentation 

• Conclusion 

 

 

 



8 / 37 04/July/2019 

Test Environment (Automotive Component) 

Application Layer 

AUTOSAR Software Stack 

Target 

Applications 

 Runtime environment 

Complex 

device 

driver 

Microcontroller 

Services layer 

ECU abstraction layer 

Microcontroller abstraction layer 



9 / 37 04/July/2019 

Test Environment (Automotive Component) 

• Debug and Trace interface offer the possibility to get details about the 
program execution 

• Debug and Trace interface is already used in many projects for 
profiling purposes 

a 

Target  

Hardware 
multicore chip 

Debug Interface  

Trace Interface  



10 / 37 04/July/2019 

Parallel Trace Port: Zynq UltraScale+ 

16-bit TPIU 
parallel trace port 

250 Mhz DDR 

1 Gbyte/s 

a 

Trace Data in ETM/PTM Protocol a 

MicroBlaze 

Cortex-A53 

SWD 
two debug pins and a clock 

Performance 

Cores 

Realtime 

Cores 

Platform 

Management 

Cortex-R5 



11 / 37 04/July/2019 

Serial Trace Port: High-End RH850 

Aurora Trace 
Serial trace port 

4 lane, 6,25 Gbit/s per lane 

2,5 Gbyte/s 

JTAG a 

                Trace Data in Nexus Protocol a 

RH 850 

RH 850 

RH 850 

Master 

Cores 

Performance 

Cores 

Auxiliary  

Cores 

ICU-M 



12 / 37 04/July/2019 

Debug and Trace Tools for All Test Phases 

   Testing of the Embedded Software 

JTAG Debugger  

with Trace 

JTAG Debugger  

with Trace 

Emulation System 

Debugger for Instruction Set 

Simulator with Trace 

Debugger for Virtual Target 

with Trace 

Hardware assisted 

Software-only 

Unit and Integration Test 

Early Testing  

without Hardware 

Evaluation Board ECU 

Scalability and  

Quick Feedback 

Debugger for Virtual Target 

with Trace 

Debugger for Instruction Set 

Simulator with Trace 



13 / 37 04/July/2019 

Agenda 

• Introduction 

• Modern Automotive Chips 

• Making Use of the Trace Capability 

• Measuring Code Coverage without Instrumentation 

• Conclusion 

 

 

 



14 / 37 04/July/2019 

Core Trace 

Trace Packets 

• Branches taken 

• Loads/stores 

• Other information 

Trace 

Generation 

Logic 

Core 



15 / 37 04/July/2019 

Program Execution Details Derived from Trace Packets 

Branches Taken + Object Code 

Branches Taken  (Nexus) 

Sequential program flow between 

two branches can be reconstructed 

with the help of the object code 
Object Code 

 

for selected  

optimization level 

ELF File 



16 / 37 04/July/2019 

Bridging the Gap to the Source Code 

Trace Packets + Object Code + Source Code 

The debug information 

provided by the elf file 

can be used to merge the 

source code lines into the 

trace listing 

ELF File 

Debug  

Information 
 

(source code 

 

object code) 

Debug  

Information 
 

source code 
 

 
object code 



17 / 37 04/July/2019 

Agenda 

• Introduction 

• Modern Automotive Chips 

• Making Use of the Trace Capability 

• Measuring Code Coverage without Instrumentation 

• Conclusion 

 

 

 

 



18 / 37 04/July/2019 

Trace-based Code Coverage 

Unit Testing 

• Statement Coverage 

• Branch Coverage 

• MC/DC (ASIL D) 

Integration Test 

• Function Coverage (ASIL D)  

• Call Coverage (ASIL D) 



19 / 37 04/July/2019 

Function Coverage 

Analyzes: Functions 

 

Definition: Every function in the program has been invoked at least once. 

 

Trace-based Code Coverage: A function achieved Function Coverage when 

at least one corresponding object code instruction has been executed 

 



20 / 37 04/July/2019 

Function Coverage 

Execution of an object code line 

     function coverage 100% 



21 / 37 04/July/2019 

Function Coverage 



22 / 37 04/July/2019 

Function Coverage 

Function Coverage can be performed on final code 

Object Code 
fully optimized 

Code Coverage Test Result 

Target Hardware 
multicore chip 

Test Run 



23 / 37 04/July/2019 

Modified Condition/Decision Coverage (MC/DC) 
 
Analyzes:  Decisions based on independence pairs 

 

Definition:   - each point of entry and exit is invoked 

    - each decision has taken all possible outcomes 

    - each condition in a decision is shown to independently 

      affect the outcome of that decision 

 

 

 



24 / 37 04/July/2019 

Independence Pairs 

Independence Pairs for condition 

(A&&B)||C 

 

• All conditions except the one to be 

tested are fixed 

 

• The decision has to change its outcome 

when the condition under test is 

changed 

 

 

#  A B C  
 

1  F F F F 

2  T F F F 

3  F T F F 

4  F F T T 

5  T T F T 

6  T F T T 

7  F T T T 

8  T T T T 

 

 



25 / 37 04/July/2019 

Bridging the MC/DC Gap 

Interpretation Trace-based Code Coverage:  

 All independence pairs are successfully tested 

? 



26 / 37 04/July/2019 

Bridging the MC/DC Gap  

1. To verify the conditions 

When analyzing the program execution, 

it must be clear from the object code 

whether a condition was TRUE or 

FALSE. 

 

2. To check the independence pairs  

a mapping of decisions to object code  

is needed. 

 



27 / 37 04/July/2019 

1. When analyzing the program 

execution, it must be clear from the 

object code whether a condition was 

TRUE or FALSE.  

 

For this, each condition must be 

mapped to the object code by a 

conditional jump / instruction. This 

can, however, only be ensured if 

code optimization is switched off. 

Bridging the MC/DC Gap – Disable Optimization  



28 / 37 04/July/2019 

Bridging the MC/DC Gap – Perform Static Code Analysis 

2. Mapping of decisions to object code 

is needed 

 

Answers the question of whether Branch 

Taken/Instruction Executed means 

TRUE or FALSE 

 



29 / 37 04/July/2019 

Modified Condition/Decision Coverage (MC/DC) 
 

Extended code analysis:  Mapping between a decision statement an its conditions  

to the conditional branches/instructions in the object code 

 

  

 



30 / 37 04/July/2019 

Modified Condition/Decision Coverage (MC/DC) 
 



31 / 37 04/July/2019 

Modified Condition/Decision Coverage (MC/DC) 
 

Code Coverage Test Result 

Target Hardware 
multicore chip 

Test Run 1 

Object Code 
fully optimized 

Test Result 

Both Results  

have to be equal 

Target Hardware 
multicore chip 

Test Run 2 

Object Code 
not optimized 



32 / 37 04/July/2019 

Agenda 

• Introduction 

• Modern Automotive Chips 

• Making Use of the Trace Capability 

• Measuring Code Coverage without Instrumentation 

• Conclusion 

 

 

 

 



33 / 37 04/July/2019 

 Metric Code Coverage Extended Code Analysis 

 Statement Coverage  On final code  ─ 

 Branch Coverage  Reduced optimization  Mapping of decisions to object  

 code 

 MC/DC  On not-optimized code  Mapping of decisions/ 

 conditions to object code 

 Function Coverage  On final code  ─ 

 Call Coverage  On final code 

 

 To tag inline function, function 

 pointer, call-less function 

 

Summary 



34 / 37 04/July/2019 

• Trace-based code coverage is applicable to all methods of ISO 26262 

• Trace-based code coverage can be performed at any stage of the project 

• Trace-based code coverage allows testing at handwritten and 
autogenerated code 

• Trace tools already employed can be used at no extra cost 

• Long-term testing by streaming trace to host computer 

• Testing with cross-compiler used to generate final code  

• Virtual verification or hardware-based testing 

 

 

Advantages 



35 / 37 04/July/2019 

Trace-based Code Coverage 

• Live coverage for all metrics 

• Improved display for MC/DC  

• ADA support 
  

Compiler 

• Special optimizations adapted to Code Coverage requirements 

• Source code analysis results for method in use included in debug information 

 

 

Further Improvements 



Andrea Martin • andrea.martin@lauterbach.com • 04 / July / 2019 


