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Introduction

Scheduling a complex application scenario is an own 
area of science and handle by various scheduling 
schemes, which are optimized for specific use cases. 
The main criteria for choosing a specific scheduling 
scheme are [STAL98]:

•	 Turnaround Time: Time between the submission of a 
process and its completion

•	 Response Time / Determinism: Time from the submis-
sion of a request until the response to be received

•	 Deadline: The processes start or completion deadline 
•	 Predictability: A job should run in the same amount 

of time 
•	 Throughput: The scheduler should maximize the num-

ber of processes completed per unit of time
•	 Processor utilization: Percentage of time, the proces-

sor is busy
•	 Fairness: Processes should be treated the same so 

that no process should suffer starvation
•	 Enforcing priorities: The scheduler should favor higher 

priorities
•	 Balancing resources: The scheduler should keep the 

resources of the system busy

The complexity rises, if the CPU has multiple cores, so 
that applications can run concurrently on all cores in 
parallel. Appropriate scheduling mechanisms are able 
to handle this with various concepts so that ideally a 
scheduler should be adaptable by considering the sys-
tem configuration and the application design.

If an application is safety critical, than the predictabil-
ity of the system becomes evident. The related safety 
standards mandate a timing analysis to prove, that the 
system is able to react in a guaranteed time to any event. 
As a result of this analysis, a ‘worst case execution time’ 
(WCET) has to be calculable for the system. The com-
plexity for determining such a value rises with the com-
plexity of the application and the complexity of the CPU 
architecture. The following list names some aspects, 
which increase the complexity of the application:

•	 Application threads need synchronization 
•	 Application threads use and share resources
•	 Application threads may have a deadline to start and/

or finish 

With multi-core CPUs the resource sharing aspects 
complicates the determination of the WCET because:

•	 Usually second level caches are shared amongst the 
cores

•	 Memory, buses and I/O are shared amongst the cores
•	 Depending on the load balancing algorithm, the oper-

ating system or the application may run on different 
cores or switch from one core to another during run-
time

A safety critical application has to cope with the above-
mentioned aspects and be predictable in any circum-
stance. 

Tried and trusted safety operating systems rely on “Time 
Partitioning” based scheduling, which ensures that 
complex application scenarios running on multi-core 
CPU are predictable and safe. This paper describes the 
patented scheduling scheme of the SYSGOs PikeOS 
hypervisor. We will first describe the PikeOS kernel con-
cept and than explain how the PikeOS time partitioning 
ensures a predictable execution of a safety application. 

PikeOS – Safety & Security by Separation

One of the most critical application examples is an avi-
onic control system. The ARINC 653 standard (for avi-
onic systems) specifies a software framework for safety 
critical avionics applications using a space and time 
partitioning concept. It allows the hosting of multiple 
applications of different safety levels on the same hard-
ware and thus is comparable to hypervisor architecture. 
That is hypervisor technology is a proven technology for 
safety and security critical applications requiring safety 
and security certification. Most popular hypervisor 
implementations like VirtualBox, VmWare etc. provide 
an execution environment to run a commodity operating 
system like Windows or Linux on top of another Win-
dows or Linux OS (type-2 hypervisor). These hypervi-
sors depend on the functionality and assurance of that 
host-OS. These implementations have been developed 
for performance-oriented virtualization. Thus, safety 
and security aspects as well as assurance needed for 
certification have been not considered. 

Safety related hypervisor technology rely on separation 
Kernel architecture. A separation Kernel uses a real-time 
micro-kernel as the basic operating system architecture 
and provides means for separation on top of the micro-
kernel. The main advantage of this architecture is, that 
the microkernel is a real-time operating system and a 
hypervisor (type-1) in one product. 

Figure 1: Separation Kernel architecture

The safety and security concept of a separation kernel 
is based on separating resources, so that applications 
cannot interfere with each other. The available resources 
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on computing hardware are the physical hardware com-
ponents and the CPUs execution time. The separation 
of physical resources is called spatial separation or 
resource partitioning, while the separation of the avail-
able execution time is known as temporal separation 
or time partitioning. Time partitioning is not a classi-
cal scheduling mechanism. It is rather a means for dis-
patching time to partitions/virtual machines and it relies 
on resource partitioning, so that we need to understand 
the resource partitioning concept first. 

PikeOS – Resource Partitioning 

As discussed in the introduction, the sharing of resources 
can become a challenge for time critical scheduling. 
If resources are shared, delays or even deadlocks can 
happen, if a resource is blocked by another application. 
Resource partitioning primarily targets the protection of 
resources, which shall exclusively be used by a dedi-
cated application running in a partition. Once a resource 
is assigned to a partition, other partitions will not be 
aware of this resource.  

PikeOS Resource partitioning is achieved by statically 
assignment of a computing resource such as mem-
ory, I/O and file devices, secure communication chan-
nels and cores to partition / virtual machines. PikeOS 
ensures that during runtime an application has guaran-
teed access to the assigned resources and that the par-
titioned resources are not accessible from applications 
belonging to other partitions.

Resource partitioning is enforced by using the MMU to 
control access to the available resources. Each hard-
ware device is somehow represented by a physical 
address in order to access this device. Resource par-
titioning is realized by using the MMU to map a certain 
memory area into a partitions virtual memory space and 
allow or deny read/write access to this memory space. 
The configuration of the MMU is done statically at sys-
tem startup in the PikeOS microkernel and is not modi-
fiable at run-time, ensuring that a hacker cannot mod-
ify the resource configuration later on. In summary, the 
separation makes sure that errors occurring in one parti-
tion cannot propagate to another partition.

Time-Partitioning based Scheduling

PikeOS partitions may host real-time as well as non-
real-time guest operating systems. These two types of 
run-time systems have fundamentally different require-
ments with respect to scheduling: 

•	 Real-time systems need to be able to make guaran-
tees about the temporal behavior of their processes. 
A necessary precondition for this is that the operat-
ing system itself knows the points in time when it will 
be able to use the processor and for how long it will 
be able to use it. In other words: the schedule, which 

defines the switching between VMs hosting real-time 
operating systems, has to be strictly a function of time. 
 

•	 Non-real-time operating systems, on the other hand, 
work by a “best effort” principle, i.e. they try to do as 
much as possible, attempting to use all the compu-
tational resources they can get. Hence, their goal is 
to minimize processor idle time. For a VM scheduler, 
this means that, whenever a VM is found to be idle, it 
should revoke the CPU from that idle VM and pass it to 
the next one, hoping that one will have useful work to 
do. The resulting VM schedule is obviously influenced 
to a large extent by the activities going on inside the 
VMs, so it is clearly not just a function of time 

The ARINC 653 standard addresses the allocation of 
CPU time across different partitions. The approach 
described in this standard works on a fixed cycle time, 
within which the individual partitions are scheduled on 
the processor in a specified order for a guaranteed dura-
tion. This “time partitioning” method is suitable for real- 
time systems, but, as discussed above, it leads to poor 
system utilization. 

Scheduling methods used by virtualization systems 
such as Xen and VMware, attempt to optimize proces-
sor utilization by revoking the CPU from VMs as soon as 
they become idle. But doing so, they cannot guarantee 
deterministic timing to their guest operating systems.  

PikeOS Adaptive Time-Partitioning

The PikeOS partition scheduler uses a combination 
of priority- and time-driven scheduling to join together 
these contradictive approaches. The time-driven sched-
uler is a mechanism to distribute the available CPU time 
amongst the PikeOS partitions. It can be defined as a 
first level scheduler, which quantifies the available time 
into time partitions (tpi; i = 1..n). Depending on the appli-
cation timing requirements, several time partitions can 
be defined and grouped into a time-frame (see Figure 2). 

Figure 2: Time Partitioning frames

A time-partition may exist more than one time in a time-
frame and can have different durations. As soon as the 
time-driven scheduler has completed a frame, the frame 
starts over gain and again (see Figure 2). 

In contrast to the ARINC 653 standard, PikeOS schedul-
ing uses a one-to-n assignment of resource partitions to 
time-partitions. That is, one or more resource partitions 
can be assigned to one time-partition (see Figure 3). 
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Figure 3: Time and Resource Partitioning assignment

In the PikeOS nomenclature user applications are 
called processes. Processes can be started in context 
of a task, where each task is characterized by it’s own 
address space and a set of schedulable entities (threads) 
bound to it. A PikeOS partition may host more than one 
task (other tasks and child tasks), so that within a parti-
tion address space additional task address spaces are 
defined. 

By assigning one or multiple resource-partition(s) to a 
time-partition, threads are grouped into time partitions, 
which are activated by the time-driven scheduler. How-
ever, in contrast to the ARINC 653 standard, one more 
time partition exists, that is active at all times. This time 
partition is referred to as the background partition, tp0, 
whereas the currently active one of the time-switched 
partitions is called the foreground partition, tpi (i = 1 ... 
N). 

In addition to their time partition, threads do also have 
a priority attribute. Whenever both the foreground and 
background partitions have active threads, the thread 
to be executed is selected according to its priority. Fig-
ure 4 shows the principle of operation: Each time parti-
tion is represented as a priority-sorted list of FIFO ready 
queues. Each of them delivers its highest priority ready 
thread and of these, the highest priority one from either 
tp0 or the currently selected tpi gets chosen for dis-
patch.  

Figure 4: PikeOS Time-Partition Scheduler Principle

With this approach, priority ranges can be defined within 
which the CPU is assigned between the partitions using 
the fixed time-driven schedule defined in a time-frame. 

The partitions periodically receive guaranteed time 
slices. But, whenever one of these partitions completes 
its job prior to having consumed its entire time slice, the 
unused time automatically falls back to the next lower 
priority thread in the background time partition. Thus, by 
running explicitly non-real-time applications with lower 
priority threads in the background time partition (tp0), 
these non-real-time applications receive all the compu-
tational resources that were assigned to, but not con-
sumed by real-time application in the foreground parti-
tion (tpi). 

The upper time-diagram in Figure 5 has 4 time-parti-
tions tp1-tp4. As time-partition tp4 has low priority, it 
is put into tp0 and tp4s time slot is distributed amongst 
the other time-partitions, so that the higher priority par-
titions have more computing time. If one of the higher 
priority partitions (tp1-tp3) get idle before using the 
assigned CPU-time, tp0 receives the rest of the execu-
tion time (lower time-diagram in Figure 5).

Figure 5: PikeOS Scheduling with low priority background application

Figure 6: PikeOS scheduling with high priority background application

In the opposite scenario, it is possible to define threads 
in the background domain, which can override time par-
titioning by assigning them a priority above those of the 
foreground domain threads. 

The upper time-diagram in Figure 6 has a fault handler, 
which is called in a dedicated time-partition tp4. In case 
of a failure the response-time of the fault-handler can 
be quite high, if the error happens right after the fault-
handler time-partition has ended. By assigning the fault-
handler to tp0, the handler is starter immediately, as it 
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has the highest priority among all active threads (lower 
time-diagram of Figure 6). 

Clearly, such high priority threads must be considered 
as trusted code from the point of view of the threads 
that they can preempt. Therefore, it is important that the 
priority assignment functions implemented in the micro-
kernel guarantee that no thread can incorrectly obtain 
rights to which it is not entitled. PikeOS achieves this 
by assigning a maximum priority to each thread. This 
value is set at thread creation time and is based on the 
maximum priority of the creating thread. It cannot be 
changed at any point during the thread’s life cycle. 

PikeOS 4.x Meeting Deadlines 

The PikeOS scheduler combines deterministic behavior 
with optimized time resource usage with a static sched-
uling scheme. The optimal run-time behavior of the sys-
tem is achieved by a deep analysis of the involved appli-
cation components (threads) and the following static 
configuration of the system. 

Meeting start or completion deadlines of threads must 
be part of the analysis and the time partitioning configu-
ration. In non-safety real-time systems a dynamic plan-
ning based scheduler takes care of meeting the dead-
lines within the application. But as we have learned in 
the chapters before, a dynamic scheduler may not be 
usable for highly critical safety systems. Thus PikeOS 
provides a deadline monitor, which invokes the health 
monitor (HM) in case a deadline is missed. 

The PikeOS health monitoring (HM) system is designed 
to handle errors at system runtime and to execute recov-
ery actions as configured in the HM configuration tables 
and user-level error handlers. 

In order to catch a deadline mismatch a thread has to be 
configured with specific flags indicating a release time 
(starting deadline) or a deadline (for completion). If the 
deadline parameter is set to future time value the thread 
will be notified when the registered deadline expires. 
The deadline-miss notification causes a health monitor-
ing exception. For the handling of this special exception 
in the user-space, the health-monitoring tables must be 
configured with an users-pace exception handler for the 
faulting thread.

Certifiable Multi-Core Scheduling

The following example explains the usage of the PikeOS 
time and resource partitioning to control a multi-core 
processor, so that it fulfills the strict requirements of the 
EN 50128 (Software for railway control and protection 
systems). 

Figure 7: Configuration of a certifiable multi-core system

The assumed platform is based on a quad-core CPU. 
The major time frame is divided into three partition win-
dows (tp1 to tp3). One critical single core application 
(RP2) shall have exclusive access to one of the cores 
(core_c) and have exclusive access to the entire platform 
during its time window (tp2). One performance-demand-
ing partition (RP3) shall have exclusive access to the 
remaining three cores during its time window (tp3). One 
time slot (tp1) is shared between two resource partitions 
(RP1 and RP4). RP1 running on two cores and RP4 run-
ning on one core.  

The selected configuration focus on a maximum level of 
isolation for the critical application accepting a waste of 
CPU time. Resource Partition 2 is the only partition exe-
cuting on core ‘C’ and during the time slice of time parti-
tion tp2 there is no other partition execution. This elimi-
nates any interference on hardware and software level. 
The level of determinism in this configuration is even 
better than on a RTOS based platform since the criti-
cal application does not share the core with other parti-
tions which also keeps the state of the private caches 
unchanged. 

Nevertheless the setting of caches and TLBs need to 
be considered. The PikeOS hypervisor provides means 
to invalidate instruction caches and TBLs and to flush 
the data cache between time partition switches. This 
ensures that caches and TLBs are in a defined state 
when a partition starts execution. The cache / TLB flush 
and invalidate operation takes place during the time 
partition switch, so it will steal the CPU cycles from the 
partition to be activated and thus cause a jitter. A pos-
sible approach is to define a small time partition window, 
which is allocated to an unused time partition ID and to 
insert this before the time critical application. This elimi-
nates the jitter of the time critical application. 

Figure 8: Avoiding jitter through cache and TLB Flushing



SYSGO Patent

Using a background time-partitions tp0 in parallel to the active 
time-partition is an invention by SYSGO and patented under 
the active patent numbers:

•	 EP 1831786 A1: Valid in CH, FR, DE, GB 
•	 EP 1831786 B1: Valid in CH, FR, DE, GB
•	 US 20090210879 A1: Valid in the United States of America

The SYSGO approach adds the following flexibility to the 
ARINC time-partitioning based scheduling:

•	 The ARINC 653 standard requires a 1-to1 assignment 
between resource partitions and time-partitions. That is, 
each time partition is logically connected with a resource 
partition. PikeOS allows the assignment of multiple resource 
partitions to one time-partition, so that threads, which need 
to be scheduled together can be isolated if required. The 
ARINC 653 scheduler is just a subset of the PikeOS sched-
uler.

•	 The PikeOS time-partition scheduler can make use of idle 
time occurring in the active time-partition. Assuming that 
the threads in the active time-partition tpi have a higher pri-
ority than the priority of the threads in the background time-
partition tp0, the higher priority will consume all time of the 
time-partition unless there is no thread left for execution. In 
this case, the scheduler will allow the highest priority thread 
in tp0 to execute.

•	 The PikeOS time-partition scheduler can execute an event-
handler timely by assigning it a high priority in tp0. As tp0 
threads are overlaid to the current active time-partition at 
any time, the event handler is called with a maximum delay 
of one system tick. 

The ARINC 653 scheduler has been designed with the main 
focus on predictability in mind. That is, the response time 
must be calculable and the system must behave in the same 
way under all circumstances. Despite bringing flexibility to 
the strict ARINC scheduler, the PikeOS scheduler adheres to 
guaranteed predictability of the system behavior at any time. 
Even more, the combination of PikeOS resource partitioning 
and time-partitioning is perfectly suited to control a multi-
core system so that it can be certified to the highest safety 
level of various safety standards. 

SYSGO has used the above-explained configuration for its 
PikeOS real-time hypervisor to achieve the first SIL4 certifi-
cate on a multi-core system (dualcore Intel i7). This principle is 
not limited to dual-core, as long as a fitting time and resource 
partitioning can configure the processor in a deterministic 
way.
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