
PikeOS
Safe Real-Time Scheduling

Adaptive Time-Partitioning Scheduler for EN 50128 certified
Multi-Core Platforms

SYSGO Whitepaper

SYSGO Whitepaper
PikeOS Safe-Real Time Scheduling

2

Introduction

Scheduling a complex application scenario is an own
area of science and handle by various scheduling
schemes, which are optimized for specific use cases.
The main criteria for choosing a specific scheduling
scheme are [STAL98]:

•	 Turnaround Time: Time between the submission of a
process and its completion

•	 Response Time / Determinism: Time from the submis-
sion of a request until the response to be received

•	 Deadline: The processes start or completion deadline
•	 Predictability: A job should run in the same amount

of time
•	 Throughput: The scheduler should maximize the num-

ber of processes completed per unit of time
•	 Processor utilization: Percentage of time, the proces-

sor is busy
•	 Fairness: Processes should be treated the same so

that no process should suffer starvation
•	 Enforcing priorities: The scheduler should favor higher

priorities
•	 Balancing resources: The scheduler should keep the

resources of the system busy

The complexity rises, if the CPU has multiple cores, so
that applications can run concurrently on all cores in
parallel. Appropriate scheduling mechanisms are able
to handle this with various concepts so that ideally a
scheduler should be adaptable by considering the sys-
tem configuration and the application design.

If an application is safety critical, than the predictabil-
ity of the system becomes evident. The related safety
standards mandate a timing analysis to prove, that the
system is able to react in a guaranteed time to any event.
As a result of this analysis, a ‘worst case execution time’
(WCET) has to be calculable for the system. The com-
plexity for determining such a value rises with the com-
plexity of the application and the complexity of the CPU
architecture. The following list names some aspects,
which increase the complexity of the application:

•	 Application threads need synchronization
•	 Application threads use and share resources
•	 Application threads may have a deadline to start and/

or finish

With multi-core CPUs the resource sharing aspects
complicates the determination of the WCET because:

•	 Usually second level caches are shared amongst the
cores

•	 Memory, buses and I/O are shared amongst the cores
•	 Depending on the load balancing algorithm, the oper-

ating system or the application may run on different
cores or switch from one core to another during run-
time

A safety critical application has to cope with the above-
mentioned aspects and be predictable in any circum-
stance.

Tried and trusted safety operating systems rely on “Time
Partitioning” based scheduling, which ensures that
complex application scenarios running on multi-core
CPU are predictable and safe. This paper describes the
patented scheduling scheme of the SYSGOs PikeOS
hypervisor. We will first describe the PikeOS kernel con-
cept and than explain how the PikeOS time partitioning
ensures a predictable execution of a safety application.

PikeOS – Safety & Security by Separation

One of the most critical application examples is an avi-
onic control system. The ARINC 653 standard (for avi-
onic systems) specifies a software framework for safety
critical avionics applications using a space and time
partitioning concept. It allows the hosting of multiple
applications of different safety levels on the same hard-
ware and thus is comparable to hypervisor architecture.
That is hypervisor technology is a proven technology for
safety and security critical applications requiring safety
and security certification. Most popular hypervisor
implementations like VirtualBox, VmWare etc. provide
an execution environment to run a commodity operating
system like Windows or Linux on top of another Win-
dows or Linux OS (type-2 hypervisor). These hypervi-
sors depend on the functionality and assurance of that
host-OS. These implementations have been developed
for performance-oriented virtualization. Thus, safety
and security aspects as well as assurance needed for
certification have been not considered.

Safety related hypervisor technology rely on separation
Kernel architecture. A separation Kernel uses a real-time
micro-kernel as the basic operating system architecture
and provides means for separation on top of the micro-
kernel. The main advantage of this architecture is, that
the microkernel is a real-time operating system and a
hypervisor (type-1) in one product.

Figure 1: Separation Kernel architecture

The safety and security concept of a separation kernel
is based on separating resources, so that applications
cannot interfere with each other. The available resources

3

on computing hardware are the physical hardware com-
ponents and the CPUs execution time. The separation
of physical resources is called spatial separation or
resource partitioning, while the separation of the avail-
able execution time is known as temporal separation
or time partitioning. Time partitioning is not a classi-
cal scheduling mechanism. It is rather a means for dis-
patching time to partitions/virtual machines and it relies
on resource partitioning, so that we need to understand
the resource partitioning concept first.

PikeOS – Resource Partitioning

As discussed in the introduction, the sharing of resources
can become a challenge for time critical scheduling.
If resources are shared, delays or even deadlocks can
happen, if a resource is blocked by another application.
Resource partitioning primarily targets the protection of
resources, which shall exclusively be used by a dedi-
cated application running in a partition. Once a resource
is assigned to a partition, other partitions will not be
aware of this resource.

PikeOS Resource partitioning is achieved by statically
assignment of a computing resource such as mem-
ory, I/O and file devices, secure communication chan-
nels and cores to partition / virtual machines. PikeOS
ensures that during runtime an application has guaran-
teed access to the assigned resources and that the par-
titioned resources are not accessible from applications
belonging to other partitions.

Resource partitioning is enforced by using the MMU to
control access to the available resources. Each hard-
ware device is somehow represented by a physical
address in order to access this device. Resource par-
titioning is realized by using the MMU to map a certain
memory area into a partitions virtual memory space and
allow or deny read/write access to this memory space.
The configuration of the MMU is done statically at sys-
tem startup in the PikeOS microkernel and is not modi-
fiable at run-time, ensuring that a hacker cannot mod-
ify the resource configuration later on. In summary, the
separation makes sure that errors occurring in one parti-
tion cannot propagate to another partition.

Time-Partitioning based Scheduling

PikeOS partitions may host real-time as well as non-
real-time guest operating systems. These two types of
run-time systems have fundamentally different require-
ments with respect to scheduling:

•	 Real-time systems need to be able to make guaran-
tees about the temporal behavior of their processes.
A necessary precondition for this is that the operat-
ing system itself knows the points in time when it will
be able to use the processor and for how long it will
be able to use it. In other words: the schedule, which

defines the switching between VMs hosting real-time
operating systems, has to be strictly a function of time.
 

•	 Non-real-time operating systems, on the other hand,
work by a “best effort” principle, i.e. they try to do as
much as possible, attempting to use all the compu-
tational resources they can get. Hence, their goal is
to minimize processor idle time. For a VM scheduler,
this means that, whenever a VM is found to be idle, it
should revoke the CPU from that idle VM and pass it to
the next one, hoping that one will have useful work to
do. The resulting VM schedule is obviously influenced
to a large extent by the activities going on inside the
VMs, so it is clearly not just a function of time 

The ARINC 653 standard addresses the allocation of
CPU time across different partitions. The approach
described in this standard works on a fixed cycle time,
within which the individual partitions are scheduled on
the processor in a specified order for a guaranteed dura-
tion. This “time partitioning” method is suitable for real-
time systems, but, as discussed above, it leads to poor
system utilization.

Scheduling methods used by virtualization systems
such as Xen and VMware, attempt to optimize proces-
sor utilization by revoking the CPU from VMs as soon as
they become idle. But doing so, they cannot guarantee
deterministic timing to their guest operating systems.  

PikeOS Adaptive Time-Partitioning

The PikeOS partition scheduler uses a combination
of priority- and time-driven scheduling to join together
these contradictive approaches. The time-driven sched-
uler is a mechanism to distribute the available CPU time
amongst the PikeOS partitions. It can be defined as a
first level scheduler, which quantifies the available time
into time partitions (tpi; i = 1..n). Depending on the appli-
cation timing requirements, several time partitions can
be defined and grouped into a time-frame (see Figure 2).

Figure 2: Time Partitioning frames

A time-partition may exist more than one time in a time-
frame and can have different durations. As soon as the
time-driven scheduler has completed a frame, the frame
starts over gain and again (see Figure 2).

In contrast to the ARINC 653 standard, PikeOS schedul-
ing uses a one-to-n assignment of resource partitions to
time-partitions. That is, one or more resource partitions
can be assigned to one time-partition (see Figure 3).

SYSGO Whitepaper
PikeOS Safe-Real Time Scheduling

4

Figure 3: Time and Resource Partitioning assignment

In the PikeOS nomenclature user applications are
called processes. Processes can be started in context
of a task, where each task is characterized by it’s own
address space and a set of schedulable entities (threads)
bound to it. A PikeOS partition may host more than one
task (other tasks and child tasks), so that within a parti-
tion address space additional task address spaces are
defined.

By assigning one or multiple resource-partition(s) to a
time-partition, threads are grouped into time partitions,
which are activated by the time-driven scheduler. How-
ever, in contrast to the ARINC 653 standard, one more
time partition exists, that is active at all times. This time
partition is referred to as the background partition, tp0,
whereas the currently active one of the time-switched
partitions is called the foreground partition, tpi (i = 1 ...
N).

In addition to their time partition, threads do also have
a priority attribute. Whenever both the foreground and
background partitions have active threads, the thread
to be executed is selected according to its priority. Fig-
ure 4 shows the principle of operation: Each time parti-
tion is represented as a priority-sorted list of FIFO ready
queues. Each of them delivers its highest priority ready
thread and of these, the highest priority one from either
tp0 or the currently selected tpi gets chosen for dis-
patch.  

Figure 4: PikeOS Time-Partition Scheduler Principle

With this approach, priority ranges can be defined within
which the CPU is assigned between the partitions using
the fixed time-driven schedule defined in a time-frame.

The partitions periodically receive guaranteed time
slices. But, whenever one of these partitions completes
its job prior to having consumed its entire time slice, the
unused time automatically falls back to the next lower
priority thread in the background time partition. Thus, by
running explicitly non-real-time applications with lower
priority threads in the background time partition (tp0),
these non-real-time applications receive all the compu-
tational resources that were assigned to, but not con-
sumed by real-time application in the foreground parti-
tion (tpi).

The upper time-diagram in Figure 5 has 4 time-parti-
tions tp1-tp4. As time-partition tp4 has low priority, it
is put into tp0 and tp4s time slot is distributed amongst
the other time-partitions, so that the higher priority par-
titions have more computing time. If one of the higher
priority partitions (tp1-tp3) get idle before using the
assigned CPU-time, tp0 receives the rest of the execu-
tion time (lower time-diagram in Figure 5).

Figure 5: PikeOS Scheduling with low priority background application

Figure 6: PikeOS scheduling with high priority background application

In the opposite scenario, it is possible to define threads
in the background domain, which can override time par-
titioning by assigning them a priority above those of the
foreground domain threads.

The upper time-diagram in Figure 6 has a fault handler,
which is called in a dedicated time-partition tp4. In case
of a failure the response-time of the fault-handler can
be quite high, if the error happens right after the fault-
handler time-partition has ended. By assigning the fault-
handler to tp0, the handler is starter immediately, as it

5

has the highest priority among all active threads (lower
time-diagram of Figure 6).

Clearly, such high priority threads must be considered
as trusted code from the point of view of the threads
that they can preempt. Therefore, it is important that the
priority assignment functions implemented in the micro-
kernel guarantee that no thread can incorrectly obtain
rights to which it is not entitled. PikeOS achieves this
by assigning a maximum priority to each thread. This
value is set at thread creation time and is based on the
maximum priority of the creating thread. It cannot be
changed at any point during the thread’s life cycle.

PikeOS 4.x Meeting Deadlines

The PikeOS scheduler combines deterministic behavior
with optimized time resource usage with a static sched-
uling scheme. The optimal run-time behavior of the sys-
tem is achieved by a deep analysis of the involved appli-
cation components (threads) and the following static
configuration of the system.

Meeting start or completion deadlines of threads must
be part of the analysis and the time partitioning configu-
ration. In non-safety real-time systems a dynamic plan-
ning based scheduler takes care of meeting the dead-
lines within the application. But as we have learned in
the chapters before, a dynamic scheduler may not be
usable for highly critical safety systems. Thus PikeOS
provides a deadline monitor, which invokes the health
monitor (HM) in case a deadline is missed.

The PikeOS health monitoring (HM) system is designed
to handle errors at system runtime and to execute recov-
ery actions as configured in the HM configuration tables
and user-level error handlers.

In order to catch a deadline mismatch a thread has to be
configured with specific flags indicating a release time
(starting deadline) or a deadline (for completion). If the
deadline parameter is set to future time value the thread
will be notified when the registered deadline expires.
The deadline-miss notification causes a health monitor-
ing exception. For the handling of this special exception
in the user-space, the health-monitoring tables must be
configured with an users-pace exception handler for the
faulting thread.

Certifiable Multi-Core Scheduling

The following example explains the usage of the PikeOS
time and resource partitioning to control a multi-core
processor, so that it fulfills the strict requirements of the
EN 50128 (Software for railway control and protection
systems).

Figure 7: Configuration of a certifiable multi-core system

The assumed platform is based on a quad-core CPU.
The major time frame is divided into three partition win-
dows (tp1 to tp3). One critical single core application
(RP2) shall have exclusive access to one of the cores
(core_c) and have exclusive access to the entire platform
during its time window (tp2). One performance-demand-
ing partition (RP3) shall have exclusive access to the
remaining three cores during its time window (tp3). One
time slot (tp1) is shared between two resource partitions
(RP1 and RP4). RP1 running on two cores and RP4 run-
ning on one core.

The selected configuration focus on a maximum level of
isolation for the critical application accepting a waste of
CPU time. Resource Partition 2 is the only partition exe-
cuting on core ‘C’ and during the time slice of time parti-
tion tp2 there is no other partition execution. This elimi-
nates any interference on hardware and software level.
The level of determinism in this configuration is even
better than on a RTOS based platform since the criti-
cal application does not share the core with other parti-
tions which also keeps the state of the private caches
unchanged.

Nevertheless the setting of caches and TLBs need to
be considered. The PikeOS hypervisor provides means
to invalidate instruction caches and TBLs and to flush
the data cache between time partition switches. This
ensures that caches and TLBs are in a defined state
when a partition starts execution. The cache / TLB flush
and invalidate operation takes place during the time
partition switch, so it will steal the CPU cycles from the
partition to be activated and thus cause a jitter. A pos-
sible approach is to define a small time partition window,
which is allocated to an unused time partition ID and to
insert this before the time critical application. This elimi-
nates the jitter of the time critical application.

Figure 8: Avoiding jitter through cache and TLB Flushing

SYSGO Patent

Using a background time-partitions tp0 in parallel to the active
time-partition is an invention by SYSGO and patented under
the active patent numbers:

•	 EP 1831786 A1: Valid in CH, FR, DE, GB
•	 EP 1831786 B1: Valid in CH, FR, DE, GB
•	 US 20090210879 A1: Valid in the United States of America

The SYSGO approach adds the following flexibility to the
ARINC time-partitioning based scheduling:

•	 The ARINC 653 standard requires a 1-to1 assignment
between resource partitions and time-partitions. That is,
each time partition is logically connected with a resource
partition. PikeOS allows the assignment of multiple resource
partitions to one time-partition, so that threads, which need
to be scheduled together can be isolated if required. The
ARINC 653 scheduler is just a subset of the PikeOS sched-
uler.

•	 The PikeOS time-partition scheduler can make use of idle
time occurring in the active time-partition. Assuming that
the threads in the active time-partition tpi have a higher pri-
ority than the priority of the threads in the background time-
partition tp0, the higher priority will consume all time of the
time-partition unless there is no thread left for execution. In
this case, the scheduler will allow the highest priority thread
in tp0 to execute.

•	 The PikeOS time-partition scheduler can execute an event-
handler timely by assigning it a high priority in tp0. As tp0
threads are overlaid to the current active time-partition at
any time, the event handler is called with a maximum delay
of one system tick.

The ARINC 653 scheduler has been designed with the main
focus on predictability in mind. That is, the response time
must be calculable and the system must behave in the same
way under all circumstances. Despite bringing flexibility to
the strict ARINC scheduler, the PikeOS scheduler adheres to
guaranteed predictability of the system behavior at any time.
Even more, the combination of PikeOS resource partitioning
and time-partitioning is perfectly suited to control a multi-
core system so that it can be certified to the highest safety
level of various safety standards.

SYSGO has used the above-explained configuration for its
PikeOS real-time hypervisor to achieve the first SIL4 certifi-
cate on a multi-core system (dualcore Intel i7). This principle is
not limited to dual-core, as long as a fitting time and resource
partitioning can configure the processor in a deterministic
way.

Rel. 1.0 © 2016 by SYSGO AG. SYSGO, ELinOS, PikeOS, and CODEO

are trademarks or registered trademarks of SYSGO AG. All other prod-

ucts, logos and service names are the trademarks of their resp. owners.

SYSGO Headquarters
Phone +49 6136 9948 500
sales-de@sysgo.com

SYSGO France
Phone +33 1 30 09 12 70
sales-fr@sysgo.com

SYSGO Czech
Phone +420 222 138 111
sales-cz@sysgo.com

